SIDDARTHA INSTITUTE OF ENGINEERING & TECHNOLOGY::PUTTUR (AUTONOMOUS)

QUESTIONBANK (DESCRIPTIVE)

Subject with Code: Chemistry (23HS0801) Course & Branch: B.Tech.; EEE, ECE, CSE, & CSIT

Year & Sem: I Year & II Sem Regulation: R23

UNIT-I STRUCTURE AND BONDING MODELS

	Write the following		
1	a) Bond order b) Heisenberg Uncertainty principle c) Schrodinger wave	[L1] [CO1]	[10M]
	equation d) Significance of Ψ and Ψ^2 e) HOMO and LUMO		
2	a) Explain Planck's Quantum Theory.	[L2] [CO1]	[5M]
	b) Write short notes on Wave-Particle duality of matter	[L2] [CO1]	[5M]
3	Illustrate the molecular orbital diagram of O_2^+ and O_2^{2-} . Explain its bond order	[L2] [CO1]	[10M]
	and magnetic property based on MOT theory.		
4	a) Derive Schrodinger wave equation?	[L3] [CO1]	[8M]
	b) Explain the significance of the Ψ and Ψ^2 .	[L2] [CO1]	[2M]
5	a) Explain de Broglie's dual nature hypothesis	[L2] [CO1]	[5M]
	b) What is Heisenberg's uncertainty principle?	[L1] [CO1]	[5M]
6	Donive equation for a neutials in one dimensional have	[I 2] [CO1]	[10 M]
	Derive equation for a particle in one dimensional box.	[L3] [CO1]	[10M]
7	a) Sketch the molecular orbital diagram for Oxygen (O ₂). Explain its bond	[L3] [CO1]	[5M]
	order and magnetic property based on MOT theory.	[L3] [CO1]	[5M]
	b) Explain π - molecular orbital of 1, 3- Butadiene with a neat sketch.		[314]
8	a) Illustrate the molecular orbital diagram of CO molecule and calculate its bond order and explain its magnetic property.	[L2] [CO1]	[5M]
	b) Explain the molecular orbital diagram for N ₂ molecule and calculate its bond order and explain its magnetic property.	[L2] [CO1]	[5M]
	 a) Explain π- molecular orbital of Benzene with a neat sketch. 	[L2] [CO1]	[6M]
9	b) Differentiate bonding and anti-bonding molecular orbitals.	[L3] [CO1]	[4M]
10	Calculate the bond order of F ₂ & NO molecule and explain the magnetic properties based on MOT theory.	[L3] [CO1]	[10M]
11	Discuss the important postulates of Molecular Orbital Theory with merits and demerits.	[L2] [CO1]	[10M]

UNIT -II MODERN ENGINEERING MATERIALS

1	Define the following		
	a) Semiconductor b) Superconductor c) Intrinsic and Extrinsic Semiconductor	[L1] [CO2]	[10M]
	d) Super capacitor e) Nanomaterial		
2	a) Explain in detail about principle and classification of semiconducting	[L2] [CO2]	[6M]
	materials.		
	b) Summarize the important applications of Semiconductors.	[L2] [CO2]	[4M]
3	Discuss about the principle, classification and applications of	[L1] [CO2]	[10M]
	Superconductors.	[L1] [CO2]	[TOIVI]
4	a) Draw the band diagrams for conductors, semi-conductors and Insulators.	[L2] [CO2]	[5M]
	b) Explain the applications of nano materials.	[L2] [CO2]	[5M]
5	a) Write the Properties of Nano materials.	[L2] [CO2]	[5M]
	b) What are the different types of CNTs?	[L1] [CO2]	[5M]
6	a) What is meant by Nano materials? How the Nano materials Classified.	[L1] [CO2]	[4M]
	b) Discuss the properties of Carbon nanotubes.	[L2] [CO2]	[6M]
7	a) Write a short note on classification and properties of Fullerenes.	[L1] [CO2]	[5M]
	b) Write a note on applications of fullerenes.	[L1] [CO2]	[5M]
8	a) Compare the band diagrams of Insulators, Semi-conductors and	[L3] [CO2]	[5M]
	Conductors.	[L2] [CO2]	[5M]
	b) Write short notes on Intrinsic and Extrinsic Semiconductors.		
9	a) Discuss the classification and properties Graphine nanoparticles.	[L2] [CO2]	[6M]
	b) Outline the important applications of Graphine nanoparticles.	[L2] [CO2]	[4M]
10	a) Explain the basic principle and Classifications of Super Capacitors.	[L2] [CO2]	[6M]
	b) Discuss applications of Super Capacitors.	[L2] [CO2]	[4M]
11	a) Explain about p-type and n-type semiconductor.	[L1] [CO2]	[5M]
	b) Discuss about Type-I and Type-II Superconductors with examples.	[L2] [CO2]	[5M]

UNIT III ELECTROCHEMISTRY AND APPLICATIONS

1	Define the following		
	a) Single electrode potential b) Primary Battery c) Second Battery d)	[L1] [CO3]	[10M]
	Electrochemical sensor e) Oxidation and Reduction		
2	a) Define Electrochemical cell? Explain the construction, working	[L1] [CO3]	[6M]
	Principle and mechanism of an Electrochemical cell.		
	b) What is single electrode potential? Calculate the single electrode potential	[L3] [CO3]	[4M]
	of zinc in 0.05M ZnSO ₄ solution at 298.15 K. $\{E_{Zn/Zn}^{2+} = -0.763V\}$		
3	Derive the Nernst equation for a single electrode potential and explain the		54.03.53
	terms in equation and write its applications.	[L2] [CO3]	[10M]
4	a) Explain construction and working of Daniel cell	[L1] [CO3]	[5M]
	b) Calculate the emf of iron-copper voltaic cell [Fe/Fe ⁺² //Cu ⁺² /Cu] with	[L3] [CO3]	[5M]
	standard potential of copper and iron as $+0.34$ V and -0.44 V respectively.		
5	Discuss the titration curves obtained in the following Acid – Base		
	Conductometric titrations		
	a) Strong acid with weak base	[L3] [CO3]	[5M]
	b) Weak acid with strong base	[L3] [CO3]	[5M]
6	a) What is primary Battery? Write about construction, cell reactions and	[L1] [CO4]	[6M]
	applications of Zinc-Air battery.		
	b) Differentiate Primary and Secondary Batteries with examples.	[L2] [CO4]	[4M]
7	a) Discuss about potentiometric sensors with examples.	[L2] [CO4]	[5M]
	b) Explain amperometric sensors with examples.	[L2] [CO4]	[5M]
8	Discuss the titration curves obtained in the following Acid - Base		
	Conductometric titrations		
	a) Weak acid with weak base	[L3] [CO3]	[5M]
	b) Strong acid with strong base	[L3] [CO3]	[5M]
9	Write a note on construction, cell reactions and applications of Lithium-Ion	[L2] [CO4]	[10M]
	rechargeable cell.		[10141]
	a) Define Fuel cell? Describe the Construction and Working principle and	[L2] [CO4]	[5M]
10	uses of Polymer electrolyte membrane fuel cell.		
	b) Write short note on Hydrogen-Oxygen fuel cell.	[L2] [CO4]	[5M]
11	a) Discuss of construction and working of conductivity cell.	[L2] [CO3]	[5M]
	b) Explain about Potentiometric redox titrations	[L2] [CO3]	[5M]

UNIT-IV POLYMER CHEMISTRY

			1
1	Explain the following	[L1] [CO5]	[10M]
	a) Polymer b) Monomer c) Polymerization d) Conducting polymers	[21][000]	
	e) Biodegradable polymer		
2	a) What is functionality of monomer? Explain in detail.	[L1] [CO5]	[5M]
	b) Discuss preparation, properties and applications of Teflon.	[L1] [CO5]	[5M]
3	Explain different types of polymerizations with examples in detail.	[L2] [CO5]	[10M]
4	Explain the following mechanism.		
	a) Free radical addition polymerization.	[L2] [CO5]	[5M]
	b) Anionic addition polymerization.	[L2] [CO5]	[5M]
5	a) Distinguish between Chain growth and step growth polymerization	[L3] [CO5]	[5M]
	with examples.		
	b) Write about Co-ordination or Ziegler-Natta polymerization.	[L2] [CO5]	[5M]
6	a) Discuss the synthesis, properties and applications of Polyvinylchloride	[L2] [CO5]	[5M]
	(PVC) polymer.		
	b) Distinguish between Thermoplastics and Thermosetting plastics.	[L2] [CO5]	[5M]
7	a) Describe the preparation, properties and uses of Bakelite.	[L4] [CO5]	[5M]
	b) Write about cationic addition polymerization.	[L2] [CO5]	[5M]
8	a) Write about synthesis, properties and applications of Poly Glycolic Acid.	[L2] [CO5]	[5M]
	b) Write about synthesis, properties and applications of Poly Lactic Acid.	[L2] [CO5]	[5M]
9	Describe the preparation, properties and uses of the following		
	a) Nylon-6, 6	[L2] [CO5]	[5M]
	b) Carbon Fibers	[L2] [CO5]	[5M]
10	a) Write the mechanism of conduction and engineering applications of Poly	[L1] [CO5]	[5M]
	acetylene conducting polymer.		
	b) Write the mechanism of conduction and engineering applications of poly	[L2] [CO5]	[5M]
11	aniline conducting polymer.		
11	a) Write the preparation, properties and application of Buna-S rubber	[L2] [CO5]	[6M]
	and Buna-N rubber.	[1,2] [0,5]	F 43 43
	b) Write the applications of conducting polymers.	[L2] [CO5]	[4M]

UNIT-V INSTRUMENTAL METHODS AND APPLICATIONS

1	Define the following a) Beer- Lambert's law b) Electromagnetic radiation c) Chromatography d) Stationary phase e) Mobile phase	[L1] [CO6]	[10M]
2	a) Explain the different regions of electromagnetic spectrum.b) Derive equation for Beer – Lambert's law.	[L1] [CO6]	[5M]
2	<u> </u>	[L2] [CO6]	[5M]
3	a) Discuss principle of UV-Visible Spectroscopy.	[L2] [CO6]	[4M]
	b) Sketch the Instrumentation of UV-Visible spectroscopy and explain its components.	[L2] [CO6]	[6M]
4	Explain the various possible electronic transitions occurs in a molecule by absorbing the UV-Visible radiation.	[L2] [CO6]	[10M]
5	a) Give an account on principle and instrumentation of IR spectroscopy.	[L2] [CO6]	[6M]
	b) Write the applications of IR spectroscopy.	[L2] [CO6]	[4M]
6	a) Explain in detail about Fundamental modes of IR Spectroscopy.	[L2] [CO6]	[5M]
	b) Discuss about selection rules of IR Spectroscopy.	[L2] [CO6]	[5M]
7	a) What is meant by Chromatography? Write about principle and	[L2] [CO6]	[6M]
	instrumentation of HPLC chromatography with neat diagram.		
	b) Write about the important applications of HPLC Chromatography.	[L2] [CO6]	[4M]
8	a) Explain various classifications of Chromatographic technique.	[L2] [CO6]	[6M]
0	b) Write about important applications of UV-Visible Spectroscopy.	[L2] [CO6]	[4M]
9	a) What is the use of detector in chromatographic technique and what are the	[L2] [CO6]	[4M]
	different types of detectors used in HPLC technique.		
	b) Discuss the principle and applications of IR Spectroscopy	[L2] [CO6]	[6M]
10	a) Discuss about different components in HPLC technique.	[L2] [CO6]	[5M]
	b) Explain the classification of chromatographic methods based on type of	[L2] [CO6]	[5M]
	mobile phase and stationary phase.		
11	a) Explain in detail about Stretching and bending vibrations.	[L2] [CO6]	[5M]
	b) Discuss the basic components of UV-Visible spectroscopy.	[L2] [CO6]	[5M]